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Abstract

Objective: Risk stratification plays a critical role in patients with asymptomatic

carotid atherosclerotic stenosis. Heavy macrophage infiltration (HMC) is an

important factor of plaque destabilization. However, in vivo imaging technolo-

gies and screening criteria for HMC remain limited. We aimed to (i) introduce

algorithms for in vivo detection of macrophage infiltrations using optical coher-

ence tomography (OCT) and (ii) to investigate the threshold of HMC and its

association with plaque vulnerability. Methods: Ex vivo OCT images were co-

registered with histopathology in 282 cross-sectional pairs from 19 carotid end-

arterectomy specimens. Of these, 197 randomly selected pairs were employed to

define the parameters, and the remaining 85 pairs were used to evaluate the

accuracy of the OCT-based algorithm in detecting macrophage infiltrations.

Clinical analysis included 93 patients receiving carotid OCT evaluation. The

prevalence and burden of macrophage infiltration were analyzed. Multivariable

and subgroup analysis were performed to investigate the association between

HMC and plaque rupture. Results: The sensitivity and specificity of algorithm

for detecting macrophage infiltration were 88.0% and 74.9%, respectively. Of

93 clinical patients, ruptured plaques exhibited higher prevalence of macro-

phage infiltration than nonruptured plaques (83.7% [36/43] vs 32.0% [16/50],

p < 0.001). HMC was identified when the macrophage index was greater than

60.2 (sensitivity = 74.4%, specificity = 84.0%). Multivariable analysis showed

that HMC and multiple calcification were independent risk factors for non-

lipid-rich plaque rupture. Interpretation: This study provides a novel approach

and screening criteria for HMC, which might be valuable for atherosclerotic

risk stratification.

Introduction

Carotid atherosclerotic stenosis remains an important

cause of ischemic stroke. About 10%–15% of all first ever

stroke patients will have an unheralded ischemic stroke

from a previously untreated asymptomatic carotid artery

stenosis.1,2 The current treatment of patients with asymp-

tomatic carotid atherosclerotic stenosis is based on the

degree of stenosis.3 However, asymptomatic patients with

high-risk plaques had significantly higher risk of ipsilat-

eral ischemic cerebrovascular events than those without

high-risk plaques with similar degrees of stenosis.4 In this

context, risk stratification of carotid atherosclerotic pla-

ques becomes critical. Macrophage infiltration (MC) plays

a pivotal role in both atherogenesis and destabilization of

carotid plaques.5 Histopathological study has shown that

the abundance of MC is associated with higher predicted

stroke risk.6,7 The assessment of the intraplaque MC bur-

den seems inseparable from risk stratification of carotid

atherosclerotic plaques. Nevertheless, current imaging

technologies of in vivo identify heavy macrophage infiltra-

tions (HMC) remain limited. Traditional imaging
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modalities such as ultrasound, multidetector-row CT

angiography, and MR angiography, with the aid of con-

trast enhancement, could provide indications of the pres-

ence of MC by revealing plaque enhancement. However,

their specificity is somewhat constrained.8 Recently, 18F-

fluorodeoxyglucose PET/CT and PET/MR have displayed

potential in detecting active inflammation within

plaques,7,9 but they are incapable of evaluating vascular

anatomy, plaque composition, and additional morpholog-

ical characteristics.

Optical coherence tomography (OCT), a real-time

intravascular imaging technique with ultra-high resolu-

tion, can assist in assessing the microarchitecture of ves-

sels, including vasa vasorum, cholesterol crystals, erosion,

and more.10–12 In the last decade, studies performed by

OCT have allowed us to shed new light on the pathologic

substrate of cerebrovascular disease.13–15 What’s more,

MC could be visible on OCT images as signal-rich, dis-

tinct, or confluent punctate regions that exceed the inten-

sity of background speckle noise.16 The overall superiority

of OCT provides us with a reliable imaging tool to screen

for HMC and help achieve plaque risk stratification.

Therefore, the purpose of this study was two-fold: (i) to

introduce and validate a set of OCT-based algorithms for

automatic assessment of MC and (ii) to determine the

threshold of HMC and certify the association between

HMC and plaque rupture (PR).

Material and Methods

Study design

The focus of this study was two-fold: (i) histological vali-

dation of OCT-based automatic MC identification algo-

rithms (OCT-MCI) in carotid endarterectomy (CEA)

specimens; (ii) quantitative assessment of MC in vivo in

human, and exploration the risk threshold of HMC and

its association with PR (Fig. 1). This study was approved

by the Ethics Committee of Jinling Hospital and Nanjing

Drum Tower Hospital. Witten informed consent was

obtained from all patients prior to CEA and/or OCT

assessment.

CEA specimens

Nineteen specimens from patients who underwent CEA

for severe (≥ 70%) atherosclerotic internal carotid artery

stenosis were collected between June 2019 and June 2021

in the Department of Neurosurgery at Nanjing Drum

Tower Hospital. OCT examinations were conducted

within 72 hours postoperatively. Following OCT image

acquisition as described below, the specimens were

pressure-fixed by formalin and decalcified with

ethylenediaminetetraacetic acid to maintain their orienta-

tion and size for comparison with OCT images.17,18 These

specimens were serially sectioned to the longitudinal axis

of the vessel at 1-mm block. From the distal side of each

1-mm block, histopathology slides of 4-μm at 16-μm
intervals were prepared. Slides were serially selected at

0.1-mm intervals and stained with HE and Movat penta-

chrome, respectively. Each histopathology slide was digi-

tized using a microscope at low magnification (×1.25)
and scanned using the 3D Panoramic Viewer system

when necessary.

Patients in the clinical study

We conducted a retrospective review of cases that under-

went OCT examination of the internal carotid artery at

Jinling Hospital from January 2017 to June 2022. The

inclusion criteria were as follows: 1) the presence of an

atherosclerotic stenosis lesion; and 2) the target vessel had

not undergone endovascular treatment (balloon dilation

or stenting) or endarterectomy before OCT examination.

The exclusion criteria consisted of nonanalyzable images,

which were defined as such if more than 3/4 of target seg-

ment could not be visualized due to serious artifact or

intraluminal blood.19 A total of 102 cases met the inclu-

sion criteria, of which nine cases were classified as having

nonanalyzable images. Ultimately, 93 cases were included

in the clinical study. Baseline information and clinical

data of patients during hospitalization were collected and

recorded, including age, gender, history of hypertension,

diabetes, coronary heart disease, stroke, current smoking,

and alcohol consumption, as well as biochemical

parameters.

OCT image acquisition

OCT images were acquired using a frequency domain

OCT system (ILUMEN OPTIS System or C7-XR, St. Jude

Medical, USA) and a 2.7-F Dragonfly OCT Imaging Cath-

eter (C7 Dragonfly Catheter or Dragonfly Duo Catheter,

St. Jude Medical, USA). In the histopathology study, the

OCT imaging catheter was guided by a guidewire through

the CEA specimen (Fig. S1). After the images were cali-

brated for Z-bias, an automatic retraction at a speed of

25 mm/s was performed to obtain a serial set of OCT

images. In the clinical study, the OCT imaging catheter

was delivered distal to the stenotic lesion in the internal

carotid artery under the guidance of a 0.3556 mm (0.014

in) PT microwire (Fig. S1). Images were acquired by

injecting 20 ml of 100% contrast medium at a flow rate

of 10 ml/s through the guiding catheter to flush out the

blood, with the pressure set at 200 psi (pounds per square

inch, 1 psi = 6.895 kPa). Calibration was completed, and
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images were obtained after an automatic retraction. All

images were stored in digital format using proprietary

software (St. Jude Medical, USA) for subsequent offline

analysis.

OCT image analysis

OCT images were independently analyzed by two experi-

enced OCT investigators who were blinded to the clinical

data. In cases where there was disagreement between the

two results, re-evaluation was performed by a third OCT

investigator, and the result was recorded after consensus

was reached by all three. Lipid plaque was defined as a

diffusely bordered signal-poor region with an overlying

signal-rich band. Lipid-rich plaque was identified if the

arc of >90 ° within a plaque. PR was characterized by the

discontinuity of the fibrous cap or/and cavitation within

the plaque. Calcification was defined as an area with low

backscattering signal and a sharp border inside of a

plaque.20 The number of calcifications within each plaque

was recorded, and they were then divided into single and

multiple calcifications. Thrombus appeared as a backscat-

tering floating in or protruding into the carotid lumen

with a dimension of at least 250 μm. Neovascularization

Figure 1. Study design. CEA, carotid endarterectomy. MC, macrophage infiltration. OCT, optical coherence tomography. OCT-MCI, OCT-based

automatic MC identification algorithms.
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was defined as signal-absent holes within a plaque

between 50 and 300 μm in diameter, and visible for at

least three consecutive frames on pullback imaging.10

Cholesterol crystals were defined as thin linear structures

with high signal and low signal attenuation.12

OCT and histology co-registration

A total of 12,982 histopathology slides were obtained, and

image matching was achieved by one OCT investigator

and one pathology investigator. The thickness of each his-

tology slice was 4 μm with a 16 μm interval between two

slices. The thickness of each OCT cross-sectional frame

was 100 μm, allowing for approximately 5 histological

slices per 1 OCT frame. The electronic histological images

were first sequentially picked out at 1-mm interval (about

50 slices, 10 OCT cross-sectional frames). Preliminary

pairing of histological images with OCT images was per-

formed according to the site of carotid bifurcation, the

size and morphology of the lumen contour, and the char-

acteristics of the plaque, to roughly confirm the matching

range and serial number.18 Subsequently, secondary exact

matching was performed at 0.1-mm intervals (approxi-

mately 5 slices, 1 OCT cross-sectional frames). The

matched group was defined as an OCT cross-sectional

frame and several pairing histological slices. Finally, there

were 1559 matched groups, which included 1559 OCT

cross-sectional frames and 6951 histological slices. Con-

sidering potential morphological and compositional simi-

larities between two consecutive OCT frames, the

matched groups were selected sequentially at 0.5-mm

intervals (5 OCT cross-sectional frames). For each

matched group, one slice with the best lumen morphol-

ogy was chosen for CD 68 immunohistochemical staining.

Slices were electronically stored using the 3D Panoramic

Viewer system. In the end, a total of 311 pairs of 1:1

matched OCT images and CD 68 immunohistochemical

stained histology images were obtained.

Considering the inevitable extrusion and deformation

during specimen sectioning, the “Big Wrap” plug-in in

Fiji software was used for image registration.21 The

“Color Deconvolution” function and “Threshold (auto-

set)” function of Fiji software were utilized to extract the

CD 68 + regions of each slice. If the CD 68 + region was

less than 0.5%, the slice was considered to have no MC

region. Thus, a total of 282 matched pairs were included

in the analysis. The extracted CD 68 + region was then

assigned to the matched OCT image in the same propor-

tion to obtain the histology-based classification images

(Fig. S2). According to these histology-based classification

images, the accuracy of OCT-MCI classification was

tested by computational binary vector methods (Supple-

mentary Methods).

From the 282 pairs of histopathological cross section

and corresponding OCT image, 197 pairs were randomly

selected for a training dataset and used to investigate the

best thresholds of parameters in the OCT-MCI. Subse-

quently, the remaining 85 pairs were used as testing data-

set. The OCT-MCI algorithm whose parameters were

determined based on the training dataset was prospec-

tively applied for the testing dataset.

OCT-based MC identification

Python 3.10 software was used for OCT image preproces-

sing and MC identification. The main objectives of OCT

raw image preprocessing were to improve image quality

and automatically extract the effective-analyzed regions

(ER). Speckle noise reduction was performed using

median filtering, mean filtering, Gaussian filtering, and

bilateral filtering. The effect of speckle noise removal was

evaluated by contrast to noise ratio and equivalent num-

ber of looks, with bilateral filtering showing the best

results. Dynamic programming (DP) was utilized for

catheter guidewire removal and automatic identification

of lumen boundaries. To ensure the accuracy and repeat-

ability of the algorithm in identifying lumen boundaries,

dice similarity coefficient (DSC) and Jaccard coefficient

were used to compare manual segmentation results by

OCT researchers and automatic segmentation results by

the algorithm.

DSC is used to measure the similarity of a set, and a

higher value represents a higher similarity of the set.22

DSC A,MÞð ¼ 2 A
T
Mj j

Aj j þ Mj j
Jaccard is used to evaluate the similarity and difference

between the two datasets.23

Jaccard A,MÞð ¼ A
T
Mj j

A
S
Mj j

Fifteen pullbacks were randomly chosen from the OCT

image dataset, and 150 images (10 frames per pullback)

were randomly selected. Lumen boundaries were manu-

ally delineated by two independent OCT investigators for

each image set. The results indicated that the agreement

between Investigator 1 and Investigator 2 was high, and

their respective results were highly correlated with the

results of DP algorithm (Table S1). Therefore, the DP

algorithm was determined to be an effective algorithm for

vessel lumen detection. Considering the penetration depth

of the OCT itself around 1–1.3 mm, the ER of the carotid

OCT images was defined as the region where the identi-

fied lumen boundaries expand 1 mm outward.

Within the ER of each cross-sectional frame, the result-

ing OCT raw-intensity image was normalized from 0 to
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1. The normalized standard deviation (NSD) was calcu-

lated by applying a standard deviation spatial filter:

NSDROI ¼ σROI
Smax�Smin

σ2ROI ¼
1

N�1
∑x∑y S x, yð Þ�S

� �2
; S x, yð Þ∈ROI

where Smax and Smin are the maximum and minimum

intensity values of the ER, N is the total number of the

pixels in the region of interest (ROI), S(x,y) is the OCT

sign as a function of x and y locations within the ROI, and

S is the mean value of the OCT signal within the ROI.24,25

Normalized standard deviation ratio (NSDR) was calculated

as the ratio of NSD values of the pixel (ROI1, punctuated

signal-rich areas) and the pixel located at a predefined span

deeper in the axial direction (ROI2, signal-attenuated areas

or shadows).26 The NSDR value was computed as

NSDRatio ¼ NSDROI1

NSDROI2

The optimal parameter values of ROI’s span and ROI’s

size were determined in the histology-based training data-

set. The performance of the algorithm was evaluated in

the histology-based testing dataset.

OCT-based MC quantitative evaluation

A series of consecutive OCT cross-sectional images

acquired from one case was performed for automated

quantitative assessment of MC. Based on the prevalence

of MC, the case was classified as having or not having

MC. The total number of MC-identified frames was

recorded. The longitudinal length of MC was defined as

OCT frame thickness multiplied by the total number of

MC-identified frames. The algorithm automatically calcu-

lated the MC burden (MC%slice) for each frame, and out-

putted the mean MC burden (MC%plaque) and maximum

MC burden (MC%Max) for each plaque. The MC index

for each plaque was obtained by multiplying the mean

MC%plaque and the longitudinal length. A receiver operat-

ing characteristic curve (ROC) was performed to deter-

mine the threshold of the MC index for predicting PR.

Then, HMC was defined as plaques with an MC index

larger than this threshold.

Statistical analysis

Clinical statistical analyses were carried out using IBM

SPSS 23.0 software (IBM, Armonk, NY) and R version

4.2.3 (R Development Core Team, Vienna, Austria). Cate-

gorical variables were presented as frequencies (percent-

ages) and compared between groups using the chi-square

test or Fisher’s exact test. The distribution of continuous

variables was tested by the Kolgormonov–Smirnov test.

Continuous variables with normal distribution were

described as mean � SD, and comparisons were per-

formed using an independent samples t-test. Variables

with skewed distribution were described as median (the

25th to the 75th percentile), and comparisons were per-

formed using Mann–Whitney U-test. Interobserver and

intra-observer reliability was assessed using Cohen Kappa

test for categorical variables and intraclass correlation test

for continuous variables.

ROC analysis was utilized to determine the best cutoff

value of MC index of each plaque to predict PR. Interac-

tion terms were used to explore whether the association

between HMC and PR differed according to MLA,

lipid-rich plaque, cholesterol crystal, and calcification. A

p-value of less than 0.05 was regarded as indicating

interaction on the multiplicative scale. The relative excess

risk due to interaction (RERI), attributable proportion

due to interaction (AP), the synergy index (S), and

corresponding 95% confidence intervals were employed as

measures of additive interaction. Multivariate analysis was

conducted to assess the independent impact of HMC on

PR within non-lipid-rich plaques by adjusting for vari-

ables including MLA <9.36, with cholesterol crystals and

with multiple calcifications. The significance level was set

to p < 0.05, and all tests of hypotheses were 2-sided.

Results

Parameter optimization and performance of
OCT-based MC identification

In the examination of the histological training dataset, the

accuracy of the OCT-MCI, measured by the area under

the curve area (AUC), varied depending on the size and

span of the ROI (Fig. 2). The maximum AUC of 0.928

was achieved when the ROI size was 21 pixels and the

ROI span was 230 pixels. The accuracy, sensitivity, and

specificity for OCT of identifying MC was 89.0%, 95.6%,

and 80.9%, respectively. Subsequently, the performance of

the algorithm was evaluated in the histological testing

dataset. As a result, with histology as the gold standard,

the accuracy of the OCT-MCI was 82.3%, with sensitivity

of 88.0% and specificity of 74.9%.

MC and plaque characteristics

In the clinical analysis, out of 93 carotid atherosclerotic

stenotic lesions, 55.9% (52/93) of plaques were detected

with MC by OCT-MCI. Analysis of plaque type via OCT

revealed that plaques with MC were more frequently clas-

sified as lipid-rich plaques (67.3% [35/52] vs 4.9% [2/41],

p < 0.001; Table 1). Compared to plaques without MC,
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those with MC had a smaller minimal luminal area

(8.2 � 4.7 vs 10.9 � 6.9, p = 0.04) and a higher preva-

lence of PR (69.2% [36/52] vs 17.1% [7/41], p < 0.001).

Detailed characteristics were assessed between the two

groups. Cholesterol crystals were more commonly

detected in plaques with MC (36.5% [19/52] vs 14.6%

[6/41], p = 0.02). In contrast, neovascularization (17.3%

[9/52] vs 14.6% [6/41], p = 0.73), intraluminal thrombus

(19.2% [10/52] vs 12.2% [5/41], p = 0.36), and calcifica-

tions (44.2% [23/52] vs 29.3% [12/41], p = 0.14) were

not significantly different between plaques with or

without MC.

Association between MC and PR

Of 93 atherosclerotic stenotic lesions in the clinical study,

46.2% (43/93) of plaques were detected with fibrous cap

disruption through OCT (Table 2). Among them, 83.7%

(36/43) of ruptured plaques were detected with MC by

the algorithm, whereas only 32.0% (16/50) of nonrup-

tured plaques had MC. In the ruptured plaques, the MC

index was significantly higher than in the nonruptured

plaques (125.2 [55.5–199.4] vs 0 [0–50.0], p < 0.001).

The mean MC%plaque (19.6 [14.3–23.6] vs 0 [0–11.3],
p < 0.001) and longitudinal length (6.0 [3.5–9.4] vs 0

[0–2.1], p < 0.001) were also higher in ruptured plaques

compared to nonruptured plaques. The ROC curve was

utilized to determine the threshold of MC index for pre-

dicting PR. The Youden index was largest when the MC

index was 60.2, with the AUC of 0.85, sensitivity of

74.4%, and specificity of 84.0%. Based on the cutoff value

of MC index (> 60.2), 40 plaques were classified as HMC

plaques. Of these, 80% (32/40) of HMC plaques were

combined with fibrous cap disruption, while only 16%

Figure 2. (A) Representative case of OCT-based automatic MC detection. (B) Steps of OCT-based automated MC analysis. (C) ROC-AUC value as

a function of ROI size and span for the NSDR-based classification. The asterisk mark indicates optimal ROI size (21 pixels) and span (230 pixels)

values that led to the highest ROC-AUC value. ER, effective-analyzable region; NSD, normalized standard deviation; NSDR, normalized standard

deviation ratio.
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(8/43) of nonruptured plaques exhibited HMCs

(p < 0.001). Additionally, compared to nonruptured pla-

ques, ruptured plaques had a larger lipid core (69.8%

[30/50] vs 14.0% [7/43], p < 0.001]), a higher prevalence

of thrombus (30.2% [13/50] vs 4.0% [2/43], p = 0.001),

and multiple calcifications (32.6% [14/50] vs 8.0% [4/43],

p = 0.003).

Association between HMC and PR: subgroup
analysis

Subgroup analyses were conducted based on plaque char-

acteristics to further investigate the association between

HMC and PR (Fig. 3). Subgroup analyses were based on

the full data set in the clinical study. HMC was shown to

be a risk factor for PR after adjusting for lipid-rich pla-

ques (adjusted odds ratio [OR], 6.34 [95% CI 1.93–
20.85]). Subgroup analysis showed no significant statisti-

cal association between HMC and PR in lipid-rich pla-

ques (OR, 0.83 [95% CI 0.08–8.52]; p = 0.88). However,

HMC remained a risk factor for PR in non-lipid-rich pla-

ques (OR, 23.92 [95% CI 3.99–143.22]; p = 0.003). There

was a multiplicative interaction between lipid-rich plaques

and HMC (p = 0.03), but not additive interaction (RERI,

�28.61 [95% CI -118.51 – 61.28]; AP, � 1.00 [95%

CI -4.41 – 2.40]; S, 0.49 [95% CI 0.09–2.78]). In the

other subgroups, both overall and subgroup analyses

showed that HMC represented as a risk factor for PR,

including MLA, cholesterol crystals, and calcifications,

and none of interactions were found.

Association between HMC and PR in
non-lipid-rich plaques

In the clinical analysis, variables that were found to be

statistically different between ruptured plaques and non-

ruptured plaques in the univariate analysis, including

MLA (<9.36), cholesterol crystals, multiple calcifications,

and HMC, were included in the multivariate model

(Fig. 4). The multivariate analysis revealed that HMC

(OR, 54.15[95% CI 5.98–490.15]; p < 0.001) and multi-

ple calcifications (OR, 17.72 [95% CI 1.89–165.77];
p = 0.01) were independently associated with non-lipid-

rich plaque rupture, whereas MLA (<9.36) and

Patients with MC

(n = 52)

Patients without MC

(n = 41) p value

Demographic characteristics

Age, years 68 (61–72) 66 (58–69) 0.13

Male sex, n (%) 18 (34.6) 16 (40.0) 0.60

Body mass index, kg/m2 25.1 � 3.1 25.0 � 2.7 0.81

Clinical features, n (%)

Hypertension 41 (78.8) 32 (80.0) 0.89

Diabetes mellitus 20 (58.8) 14 (41.2) 0.73

Prior stroke/TIA 16 (30.8) 12 (30.0) 0.94

Coronary heart disease 15 (28.8) 9 (22.5) 0.49

Current smoking 21 (40.4) 15 (37.5) 0.78

Biochemical parameters

Triglycerides, mmol/L 1.4 (1.0–2.0) 1.2 (1.1–1.7) 0.63

Total cholesterol, mmol/L 3.4 (2.9–4.3) 3.5 (2.8–4.1) 0.91

HDL, mmol/L 1.0 (0.9–1.1) 1.0 (0.9–1.1) 0.50

LDL, mmol/L 1.8 (1.5–2.4) 2.0 (1.4–2.4) 0.68

Creatinine, μmol/L 66.0 (55.9–78.8) 60.6 (55.8–70.2) 0.09

Serum glucose, mmol/L 5.6 (4.8–7.1) 5.4 (4.9–6.3) 0.33

OCT findings

MLA, mm2 8.2 � 4.7 10.9 � 6.9 0.04

Plaque rupture, n (%) 36 (69.2) 7 (17.1) <0.001

Lipid-rich plaque, n (%) 35 (67.3) 2 (4.9) <0.001

Thrombus, n (%) 10 (19.2) 5 (12.2) 0.36

Cholesterol crystals, n (%) 19 (36.5) 6 (14.6) 0.02

Neovascularization, n (%) 9 (17.3) 6 (14.6) 0.73

Calcifications, n (%) 23 (44.2) 12 (29.3) 0.14

Multiple calcifications, n (%) 12 (23.1) 6 (14.6) 0.31

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MC, macrophage infiltrations; MLA, min-

imum luminal area; TIA, transient ischemic attack.

Table 1. Comparison of clinical character-

istic and OCT findings based on the pres-

ence of MC detected by OCT-MCI.
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cholesterol crystals were not significant. This suggested

that HMC represented as an independent risk factor for

fibrous cap disruption in non-lipid-rich plaques after

adjusting for multiple associated factors.

Discussion

The main findings of this study were as follows: (1)

OCT-based algorithms for automatic MC identification in

vivo were introduced. The sensitivity and specificity of

OCT-MCI for detecting MC were 88.0% and 74.9%,

respectively. (2) MC was identified in 83.7% of ruptured

plaques. The burden of MC, calculated as MC index, was

significantly higher in ruptured plaques than in

nonruptured plaques. (3) HMC was identified as an inde-

pendent risk factor for PR in non-lipid-rich plaques.

In this study, an algorithm was established for OCT-

based automatic MC identification in vivo using open-

source Python language. Previous study by Tearney’s

team showed a correlation between punctuated signal-rich

bright spots on OCT images and the presence of MC in

fibrous cap of fibroatheromas plaques, and introduced

NSD as an imaging marker for MC identification.24 NSD

was then used to identify MC in preselected regions on

OCT, which were mainly within fibrous cap or plaque

shoulder.25,27,28 Researchers have compared the effective-

ness of MC identification based on three different param-

eters: NSD, granulometry index, and signal attenuation,

Table 2. Comparison of clinical character-

istics, MC features, and OCT finding based

on the presence of plaque rupture.

Patients with PR

(n = 43)

Patients without PR

(n = 50) p value

Demographic characteristics

Age, years 67 (61–70) 66 (60–70) 0.45

Male sex, n (%) 28 (65.1%) 30 (61.2) 0.70

Body mass index, kg/m2 25.1 � 3.0 25.0 � 2.9 0.87

Systolic blood pressure,

mmHg

140.6 � 19.7 136.2 � 16.5 0.25

Diastolic blood pressure,

mmHg

78 (72–86) 77 (69–80) 0.16

Clinical features, n (%)

Hypertension 32 (74.4) 41 (83.7) 0.27

Diabetes mellitus 17 (39.5) 17 (34.7) 0.63

Prior stroke/TIA 12 (27.9) 16 (32.7) 0.62

Coronary heart disease 14 (32.6) 10 (20.4) 0.19

Current smoking 17 (39.5) 19 (38.8) 0.94

Biochemical parameters

Triglycerides, mmol/L 1.4 (1.1–1.9) 1.1 (1.0–1.8) 0.11

Total cholesterol, mmol/L 3.5 (2.9–4.5) 3.5 (2.8–4.0) 0.36

HDL, mmol/L 1.0 � 0.2 1.0 � 0.2 0.75

LDL, mmol/L 1.8 (1.5–2.4) 1.9 (1.5–2.5) 0.69

Creatinine, μmol/L 64.0 (54.0–74.2) 65.5 (57.3–77.2) 0.58

Serum glucose, mmol/L 5.6 (4.9–7.0) 5.5 (4.8–6.4) 0.54

MC features

With MC, n (%) 36 (83.7) 16 (32.0) <0.001

Longitudinal length, mm 6.0 (3.5–9.4) 0 (0–2.1) <0.001

Maximum area, % 27.3 (17.9–34.0) 0 (0–15.0) <0.001

Mean area, % 19.6 (14.3–23.6) 0 (0–11.3) <0.001

MC index 125.2 (55.5–199.4) 0 (0–50.0) <0.001

HMC, n (%) 32 (74.4) 8 (16.0) <0.001

OCT findings

MLA, mm2 8.0 � 5.7 10.5 � 5.9 0.04

Lipid-rich plaque, n (%) 30 (69.8) 7 (14.0) < 0.001

Thrombus, n (%) 13 (30.2) 2 (4.0) 0.001

Cholesterol crystals, n (%) 14 (32.6) 11 (22.0) 0.25

Neovascularization, n (%) 8 (18.6) 7 (14.0) 0.55

Calcifications, n (%) 24 (55.8) 11 (22.0) 0.001

Multiple calcifications, n (%) 14 (32.6) 4 (8.0) 0.003

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MC, macrophage infiltrations; MLA, min-

imum luminal area; PR, plaque rupture; TIA, transient ischemic attack.
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Figure 3. Subgroup analyses. HMC was shown to be a risk factor for PR after adjusting for lipid-rich plaques. No significant statistical association

was found between HMC and PR in lipid-rich plaques. However, HMC remained a risk factor for PR in non-lipid-rich plaques. In the other

subgroups, both overall and subgroup analyses showed that HMC represented as a risk factor for PR, including MLA, cholesterol crystals, and

calcifications, and none of interactions were found. CI, confidence interval; HMC, heavy macrophage infiltration; MLA, minimum lumen area; OR,

odds ratio.

Figure 4. Multivariable logistic regression analysis for plaque rupture. HMC and multiple calcifications were independently associated with non-

lipid-rich plaque rupture, whereas MLA (<9.36) and cholesterol crystals were not significant. CI, confidence interval; HMC, heavy macrophage

infiltration; MLA, minimum lumen area; OR, odds ratio.
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and found that NSD analysis exhibited the highest

accuracy.27 However, other plaque components such as

the external elastic lamina and plaque healing could also

produce high NSD values.29 Recently, Javier’s team pro-

posed an improved method based on NSD analysis by

adding the ratio processing of punctuated signal-rich

areas (with high NSD values) to signal-attenuated areas

or shadows (with low NSD values) in a subsequently dee-

per axial region, which led to significant improvements in

the accuracy, specificity, and sensitivity of NSD-based

recognition.26

The study has made several improvements by incorpo-

rating the concept of NSDR and utilizing the characteris-

tics of cerebrovascular OCT images. Firstly, filter

preprocessing was employed to improve the image quality

for the inherent speckle on OCT images. Secondly, unlike

previous investigations conducted on coronary arteries,

the penetration depth of OCT in carotid plaques is lim-

ited, which poses challenges in accurately defining the

analyzable range of images during manual reading in clin-

ical settings. To mitigate excessive analysis and minimize

errors in manual readings, ER was used to quantitatively

evaluate MC in carotid plaques. Although the whole-

plaque macrophage density rarely exceeds a few

percent,5,30 the superficial macrophage density is usually

high.31 Thus, the MC% calculated based on ER may bet-

ter reflect the clinical focus and provide clinicians with

reference values. In the future, combining OCT with

imaging techniques that offer improved penetration, such

as intravascular ultrasound, may enable more comprehen-

sive evaluation of deeper plaques structure.

In the present study, HMC was identified as an inde-

pendent risk factor for PR in non-lipid-rich plaques. This

suggests that even in plaques lacking a lipid-rich core,

HMC may pose a threat to plaque homeostasis by

degrading the collagen-rich cap matrix and inhibiting

new collagen synthesis.32,33 This discovery introduces a

novel finding that the presence of HMC could serve as a

crucial indicator of atherosclerosis progression in non-

lipid-rich plaques. While initial ruptures in this type of

plaques may be healed and clinically silent, persistent

HMC not only triggers further inflammation but also

contributes to the re-rupture of the fibrous cap.34 Such de

novo ruptures, compared to first-time ruptures, are more

likely to generate artery-to-artery embolisms or result in

severe stenosis, ultimately leading to stroke.35,36 Con-

versely, there was no significant independent association

found between HMC and PR in lipid-rich plaques. We

hypothesized that lipid-rich plaques might require reach-

ing a relatively higher risk threshold to disrupt the initial

temporary equilibrium within the plaque. Future studies

with larger sample sizes are necessary to validate this

hypothesis. Nevertheless, in lipid-rich plaques, sustained

HMC also contributes to increased inflammation, which

subsequently leads to rupture and thrombosis.5 Although

the timing and mechanism of rupture may differ between

HMC plaques with and without large lipid cores, persis-

tent HMC remains a significant trigger that jeopardizes

plaque homeostasis. Therefore, early consideration of

aggressive management might be recommended once

HMC is detected, regardless of whether patients have

lipid-rich plaques or not. For instance, promoting anti-

inflammatory diets in the daily health management of

these patients could be beneficial, as studies have indi-

cated that such diets may be associated with reduced pla-

que vulnerability and vascular events.37,38 Additionally,

more intensive cholesterol lowering therapy or the addi-

tion of anti-inflammatory agents may need to be

considered.

More importantly, our findings may inspire the design

of forthcoming clinical trials aimed at risk stratification

for identifying patients at increased risk of stroke while

undergoing medical therapy. Growing evidence suggests

that stroke could be attributed to the presence of vulnera-

ble plaques, even in the absence of moderate or severe

stenosis.4,7,39–41 As medical therapy advances and risk fac-

tor control improves, the benefits of surgery or stenting

may diminish.42,43 Hence, it becomes imperative to iden-

tify patients with asymptomatic carotid stenosis with sta-

ble and with unstable plaques and to select those patients

who would benefit from carotid intervention. A recent

study has indicated that persistent increasing active

inflammation may hinder plaques from exhibiting a

favorable response and rendering them vulnerable despite

statin therapy. This is evident by the development of new

layered plaques, which undergo a cycle of rupture and

healing, ultimately contributing to plaque progression.44

Incorporating plaque inflammation into current selection

strategies may target patients who are most likely to

derive long-term benefits from carotid revascularization,

both in the early and late stages. However, the limited

methods available for assessing MC hinder further analy-

sis regarding the extent of MC that would benefit most

from carotid revascularization. Our exploratory study

introduces a novel approach for quantifying MC and ini-

tially determines the risk threshold of HMC based on a

limited number of clinical samples. This may provide a

valuable reference for designing future trials that investi-

gate risk models enriched with imaging data.

Over the past decade, OCT has emerged as a promising

technology for cerebrovascular assessment, offering

enhanced possibilities for detailed evaluation of both

extracranial and intracranial vessels.13,45,46 Due to its high

resolution, OCT holds the potential to serve as an effec-

tive tool for precision medicine, including automatic

image recognition and machine learning.47,48 However,
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commercially available OCT imaging catheters were pri-

marily designed for coronary arteries, which imposes cer-

tain limitations when employed in cerebrovascular

assessment. Firstly, when assessing middle cerebral arteries

with tortuous pathways, the imaging catheter may be vul-

nerable to damage caused by excessive tortuosity.49 Fortu-

nately, this limitation appears to be circumvented when

evaluating extracranial vessels and vertebrobasilar arteries

that exhibit relatively straight pathways. Furthermore, the

depth of penetration of OCT imaging catheters remains

limited in cerebrovascular assessment. This hinders their

capacity to assess deeper structures and vascular remodel-

ing. In the future, this challenge could be addressed by

incorporating intravascular ultrasound assessment, which

offers greater depth of penetration. Overall, it seems

imperative to develop OCT imaging catheters specifically

tailored for cerebrovascular assessment.

This study has some limitations. Firstly, the resolution

of OCT imaging limited the identification of specific sub-

types of inflammatory cells in the OCT image-based algo-

rithm. However, this limitation could potentially be

addressed in the future through the implementation of

high-frequency OCT or micro-OCT.50 Secondly, the algo-

rithm has not yet been able to analyze lesions of in-stent

neo-atherosclerosis due to the high signal emitted by the

stent wire within plaques, which might cause errors.

Lastly, the sample size for the clinical analysis remains

limited. Future studies with larger sample sizes may pro-

vide more robust data to support the findings of this

study.

Conclusively, this study introduced an OCT-based

algorithm for automatic assessment of MC in vivo. HMC

(MC index >60.2) identified by the algorithm was an

independent risk factor for PR even in non-lipid-rich pla-

ques. This study provides a novel approach for in vivo

identification of MC and new screening criteria for HMC

plaques, which might be valuable for early detection and

monitoring of high-risk atherosclerotic plaques.
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